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Asymmetric I-V characteristics and magnetoresistance in magnetic point contacts

A. R. Rocha and S. Sanvito∗

Department of Physics, Trinity College, Dublin 2, IRELAND

(Dated: 15th March 2004)

We present a theoretical study of the transport properties of magnetic point contacts under bias.
Our calculations are based on the Keldish’s non-equilibrium Green’s function formalism combined
with a self-consistent empirical tight-binding Hamiltonian, which describes both strong ferromag-
netism and charging effects. We demonstrate that large magnetoresistance solely due to electronic
effects can be found when a sharp domain wall forms inside a magnetic atomic-scale point con-
tact. Moreover we show that the symmetry of the I-V characteristic depends on the position of
the domain wall in the constriction. In particular diode-like curves can arise when the domain wall
is placed off-center within the point contact, although the whole structure does not present any
structural asymmetry.

PACS numbers: 75.47.Jn, 72.10.Bg, 73.63.-b

I. INTRODUCTION

The study of electronic devices at the nanoscale is of
paramount importance both from the scientific and the
technological point of view. One important aspect is re-
lated to spin polarized electronic transport in magnetic
materials, a field usually known as spintronics1. This
has been subject of intense study in recent years,2,3,4

since the discovery of the giant magnetoresistance effect
(GMR) in magnetic multilayers.5,6,7,8 GMR is the dras-
tic change of the electrical resistance of a magnetic mul-
tilayer when a magnetic field is applied. The effect of
the field is to align ferromagnetically the magnetization
vectors of adjacent magnetic layers, which otherwise are
oriented antiparallel to each other. The parallel state
has a lower resistance than the antiparallel and this pro-
duces the magnetoresistance. GMR has already led to
the construction of the present generation of magnetic
data storage devices. However, in order to reach storage
densities of the order of Terabit/in2 a substantial down-
scaling of the read/write devices is needed. One possible
avenue to this target is given by magnetic point contacts
(MPC’s), where the lateral size of the typical contacts
approaches the atomic scale.

Recent experiments have shown that nanoscaled
magnetic point contacts may present huge
magnetoresistance2,3,4,9,10,11,12 reaching up a few
hundred thousand percent.13 This result alone can
be seen as a major leap toward nanoscopic magnetic
memory read/write devices. In addition, it is important
to report that electro-deposited nickel point contacts
present highly asymmetric I-V characteristics typical of
a diode-like behaviour.10,11 A complete explanation of
both these effects is still lacking.

To date there is a large debate around the origin of
the large magnetoresistance effects in MPC’s. On the
one hand, it has been argued that magnetic field-induced
mechanical effects can produce a large GMR. In fact, ei-
ther magnetostriction, dipole-dipole interactions between
the apexes14 and magnetically induced stress relief15 may
have the effect of compressing the nanocontact once a

magnetic field is applied. This enlarges the cross sec-
tion of the MPC and consequently the resistance of the
junction decreases. On the other hand, there are also
strong indications that mechanical effects alone are not
able to account for whole magnetoresistance. Specifically
Garćıa et. al. have shown that the behaviour of MPC’s
does not comply with mechanical changes, in particular
with magnetostriction effects.2,3

One important step toward the understanding of the
magnetoresistance effect in point contacts comes from the
work of Bruno.16 He has shown that if the magnetic mo-
ments on the apexes of the constriction are not aligned
parallel to each other, then a domain wall (DW) will
be formed inside the constricted region. The main fea-
tures of this DW are quite different from those of the
well know Bloch17,18 and Néel19 walls. In particular,
the crucial point is that the length of the DW is pre-
dicted to be as long as the diameter of the constriction.
This result suggests that the DW trapped in an atomic
scale MPC may be very sharp, only a few atomic planes
long. At this length scales a DW produces a rather strong
spin-dependent scattering potential and large magneto-
induced effects are somehow expected. In this context it
is important to report that such an extreme confinement
has been already achieved by contacting two magnetic
grains with different orientation.4

Since Bruno’s seminal idea a number of theoreti-
cal works on transport through magnetic domain walls
have been presented.20,21,22,23 These consider equilib-
rium transport in the spirit of the Landauer-Büttiker
formalism;24 current induced effects such as charging
of the point contact and, quite possibly, movement of
the domain wall have not been taken into consideration.
However in low dimensional systems such as these even
small biases might cause charge accumulation inside the
MPC, changing its transport properties.25

In this work we investigate whether the transport prop-
erties of MPCs, in particular the magnetoresistance ef-
fect and the asymmetry in the I-V curves, can arise from
electronic effects only. We model the magnetoresistance
in MPC using the typical spin-valve scheme: we assume
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that in the absence of a magnetic field, the magnetization
vectors of the two leads are aligned opposite to each other
(antiparallel state). Therefore in the zero field situation
a sharp DW is formed inside the MPC. Then, when a
magnetic field is applied, the magnetic moments of the
leads align parallel to each other and the wall is elimi-
nated (parallel state). In this configuration the resistance
is reduced giving rise to a GMR-like effect. Our task is to
calculate the I-V curves of both the parallel and antipar-
allel states, assuming a simple but reasonable electronic
structure for the material forming the MPC and consid-
ering charging effects.

We also investigate the effects of the position of the
DW inside the constriction. When the DW is positioned
in the centre of the constriction, we expect symmetric
I-V curves, since no asymmetry is present in the MPCs.
However, if the position of the wall is shifted from the
midpoint, and charging effects are present, we expect the
appearance of asymmetric I-V curves. It is noteworthy
to mention that a linear response Landauer-Büttiker ap-
proach to transport cannot account for charging effects,
and therefore cannot describe asymmetric I-V character-
istics.

This paper is organized as follows. In the next sec-
tions we introduce our self-consistent technique based on
the non-equilibrium Green’s function formalism26,27,28,29

with tight-binding Hamiltonians.30 Then we will use our
method to study the effects due to the existence of a
domain wall on the electronic transport of MPC’s.

II. NON-EQUILIBRIUM TRANSPORT

METHOD

In order to describe the transport properties of
MPC’s, including charging effects, we use the non-
equilibrium Green’s function approach based on the
Keldysh formalism.26,27,28,29 We start by dividing an
open system into three distinct regions: two semi-infinite
electrodes and a central scattering region where the MPC
is located. Here the leads act as charge reservoirs, there-
fore they set the temperature and electronic distribution
of the junction in the steady state. In principle calculat-
ing the electronic structure of such a system would in-
volve the solution of a quantum mechanical problem for
a non-periodic open system, which consist of an infinite
number of degrees of freedom. However, there are two
reasons that allow us to focus only on the central scat-
tering region. Firstly, we note that most of the potential
drop occurs at the nanoconstriction. This observation
underpins the assumption that the relevant modification
of the electronic structure due to the presence of a bias
will occur to those degrees of freedom corresponding to
the central region. Secondly we assume that the rear-
rangement of the electronic structure in the central re-
gion does not change the electronic structure of the elec-
trodes. Note that this is a well sustained approximation
for good metals where the screening length is very short

and the relaxation of the charge density occurs within a
few atomic planes. Under this condition their dynamics
can be neglected with the exception of a rigid shift of the
chemical potential due to the bias. Therefore we reduce
our problem to that of calculating the Green’s function
of the central scattering region.

Using an orthogonal tight-binding model we construct
the retarded Green’s operator of the scattering region in
the presence of the leads as follows27

G = lim
η→0

[(ǫ + iη) − HS − ΣL − ΣR]
−1

, (1)

where HS is the Hamiltonian of the scattering region and
ΣL and ΣR are the leads self-energies. These are energy
dependent potentials added to the Hamiltonian to ac-
count for the interaction with both the left and the right
lead. The self-energies are matrices of the same dimen-
sion of HS and of the form

ΣL = H†
LSĝLHLS (2)

and

ΣR = HRSĝRH†
RS, (3)

where ĝL and ĝR are the surface Green’s functions for the
left and right leads respectively and HLS (HRS) is the
coupling matrix between the scattering region and the
left (right) lead. Note that G given by the equation (1) is
formally the Green’s function of the effective Hamiltonian
Heff for the scattering region in presence of the leads

Heff = HS + ΣL + ΣR . (4)

This Hamiltonian is non-hermitian since the Σ’s are not
hermitian, consequently the number of electrons in the
scattering region is not conserved.

One of the crucial aspects of the method is computing
the surface Green’s functions ĝ. Several ways for calcu-
lating the surface Green’s functions of a semi-infinite sys-
tem are available in the literature, ranging from recursive
methods27 to semi-analytical solutions.31 In this work we
use the technique presented by Sanvito et. al.31 that cal-
culates the surface Green’s function exactly. The method
first constructs the Green’s function of an infinite system
and then derives the surface Green’s functions ĝ by intro-
ducing the appropriate boundary conditions. Following
this procedure a general semi-analytical expression for
the surface Green’s function is derived. The benefit of
our method is to avoid the typical complications of the
recursive methods, preserving information about the in-
dividual scattering states in the leads.31

This formulation of the transport problem can account
for finite bias. As we discussed previously the bias V is
assumed not to change the electronic structure of the
leads, but only to shift all energy levels. Therefore V
is introduced as a rigid shift of the leads’ Hamiltonian
on-site energies

HL/R −→ HL/R ±
V

2
I, (5)
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where I is the identity matrix. This in turn redefines the
leads self-energies in the following way

ΣL/R (ε) −→ ΣL/R (ε ∓ V/2) . (6)

In contrast to the leads, due to the presence of a large
potential drop, the effects of a finite bias on the scattering
region need to be calculated self consistently. This is done
by noting that HS is a function of the scattering region
single particle charge density only33 HS = HS(ρ). This
property gives us a clear prescription for performing a
self-consistent calculation.

We first compute the scattering region Green’s func-
tion (equation (1)) for HS = HS(ρ0), where the Hamil-
tonian HS is evaluated at a given initial charge density
ρ0. Then from the Green’s function G we calculate the
new charge density ρ1, which is then used to construct
the new Hamiltonian HS (ρ1). This procedure is iterated
until reaching self-consistency, that is when ρn+1 = ρn.
Note that a fundamental requirement is that the final
self-consistent density matrix matches exactly that of the
leads at the boundaries. Therefore we usually enlarge
the scattering region to contain a few atomic planes of
the leads (those where the electronic structure is differ-
ent from that of the bulk). The exact number of such
planes depends on the screening length of the material
considered. As a general rule we add as many planes
as necessary for the charge density of the more external
plane to match exactly that of the infinite leads. In this
case the description of the leads in terms of self-energies
is perfectly justified.

Within this scheme the density operator of the scat-
tering region D is evaluated from the Green’s function
G

D =
1

2π

∫

dε G [ΓLf (ε − µL) + ΓRf (ε − µR)]G†,

(7)
where

ΓL/R = i
[

ΣL/R − Σ
†

L/R

]

, (8)

and f
(

ǫ − µL/R

)

is the Fermi distribution function cal-
culated at the chemical potentials of the leads µL/R.

In general it can be very clumsy to solve the equation
(7) numerically, since the integration has to be performed
over the entire real axis. However, we can both add and
subtract the term GΓRG

†f (ε − µL) to the equation (7)
rewriting the density operator as

D = D
0 + D

V , (9)

where now

D
0 = −

1

π

∫

dε Im [G] f (ε − µL) , (10)

D
V =

1

2π

∫

dε GΓRG
† [f (ε − µR) − f (ε − µL)] . (11)

We can interpret D
0 as the density matrix at equilib-

rium, i.e. the one calculated when both the reservoirs
have the same chemical potential µL, and D

V as the out
of equilibrium charge density obtained when a potential
bias V is applied across the device. The separation of
D into D

0 and D
V has some important numerical ad-

vantages. Firstly D
V is bounded by the difference be-

tween the Fermi functions f (ε − µR) − f (ε − µL) and
therefore one needs to perform the integration only in
the energy range between the two chemical potentials.
Secondly, since the Green’s function G is analytical, D

0

can be integrated in the complex plane using a standard
contour integral technique.29,34 In this way we have re-
duced an unbounded integral over the real energy axis to
a bounded one over the real axis plus a well behaving un-
bounded integral in the complex plane. In addition, the
lower limit of the contour integral is set by the lowest be-
tween the bottom of the conduction band of the leads and
the deepest of the energy levels of the scattering region.

Once self-consistency has been achieved and both the
charge density and the potential have been calculated,
we can finally evaluate the current through the device

I =
e

h

∫

dε Tr
(

ΓLG
†
ΓRG

)

(f (ε − µL) − f (ε − µR)) .

(12)
The term Tr

(

ΓLG
†
ΓRG

)

is the energy-dependent to-

tal transmission probability T (ε, V ).27 Note that the to-
tal current is nothing but e/h times the energy-dependent
total transmission coefficient integrated over the bias
window. This latter depends not only on the electron en-
ergy but also over the bias applied V , since the potential
across the device is bias-dependent. However, this does
not mean that the electrons exchange energy while pass-
ing through the device. On the contrary the transport is
still phase-coherent. The current is carried by electrons
crossing the device with probability T (ε, V ), leaving an
occupied state of the lead with the higher chemical po-
tential and filling an empty state at the same energy in
the other lead. At low bias (µR → µL) and temperature
(T → 0), the equation (12) reduces to the well-known
linear response Landauer-Büttiker formula.27

III. THE MODEL

The theoretical approach to transport described in the
previous section is general and can be applied to a num-
ber of different systems and model Hamiltonians. Fig-
ure 1 shows a sketch of the point contact used in the
present calculations. Our structure consists of two semi-
infinite rods representing the leads connected through a
constricted region containing four atomic planes with a
square four-atom cross section. This models a nickel
nanowire connected to two current/voltage electrodes.
Each atomic site is described by a spin-dependent two-
orbital tight-binding model. One orbital forms a broad
band and represents the s orbitals while the other forms
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a narrow band and represents the d orbitals. Spin degen-
eracy is lifted on the d states by adding a spin-dependent
contribution to the on-site energy. The spin σ on-site
energy for the i-th orbital at each site (i labels both the

position ~R and the orbital α, i = (~R, α)) is given by

ǫσ
i = ǫ0i +

zσJ

2
µ~Rδ~Rα ~Rd + U

(

∑

ασ

nV
~Rασ

− n0
~R

)

. (13)

The first term, ǫ0i is the spin independent band centre.
The second term, which is not zero only for the d or-
bitals is a Stoner-like term with J the exchange inte-
gral, z↑↓ = ∓1 and µ~R = n~Rd↑ − n~Rd↓ the magnetic

moment at each site. This latter is given by the differ-
ence in the d orbital occupation between majority and
minority spins. Finally, the last term is introduced to
ensure charge neutrality.35 It is proportional to the dif-
ference between the self-consistent atomic charge density
nV

~R
=
∑

ασ nV
~Rασ

and that at equilibrium n0
~R
. nV

~R
is calcu-

lated self-consistently from the non-equilibrium density
matrix D (equation (9)). The total number of electrons
and the orbital occupation are respectively given by

Ne = Tr [D] (14)

and

nV
~Rασ

= Tr[D|~Rασ〉〈~Rασ|] , (15)

where |~Rασ〉〈~Rασ| is the projector over the state

(~R, α, σ). Finally here we consider only first nearest
neighbour coupling with elements ts, td and an hybridiza-
tion term tsd.

Figure 1: Sketch of model structure used in the calculations
consisting of two nine atom cross section semi-infinite leads,
connecting through a four atom cross section wire. The num-
bers label the four planes of the wire.

Before turning our attention to the non-equilibrium
problem, we must set the parameters of the calculation, i.
e. we must determine some reasonable values for ǫ0i , ti, J
and U . In particular, the leads depicted in figure 1 should
describe the bulk properties of a strong ferromagnet (a
ferromagnet where the majority spin band is completely
occupied). To this purpose we performed self-consistent
calculations of the electronic structure of a 3×3 infinite
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Figure 2: Density of states of a simple cubic infinite rod de-
scribed by our self consistent two bands tight-binding model.
The picture refers to the same nine atom cross section struc-
ture used as semi-infinite lead in the transport calculation.
The solid (dashed) line corresponds to majority (minority)
spin band.

rod (representing the leads). We assume an atomic occu-
pation of three electrons per atom (two electrons in the
s orbitals and one electron in the d orbital), and we fix
ts and td in order to reproduce the correct bandwidth
of the s and d band of Ni respectively.36 Then we set J ,
tsd and U to give respectively the Stoner instability, the
charge transfer from the d to the s band, and the local
charge neutrality. A good description of a strong ferro-
magnet is given by the following choice of parameters:
ǫs = −6 eV, ǫd = 0 eV, ts = −2.8 eV, td = −0.3 eV,
tsd = 0.4 eV, U = 7 eV and J = 3.6 eV. Figure 2 shows
the DOS resulting from our calculations, where one can
clearly see a completely filled d band for majority spin
and an half-filled d band for the minority.

We are now ready to calculate the I-V curve of the
nanocontact. In our calculations, we considered two pos-
sible configurations depending on whether the magneti-
zations in each of the leads are aligned parallel or anti-
parallel with respect to each other. In the latter case,
a domain wall will appear in the middle of the constric-
tion with characteristic length scales comparable to the
length of the nanowire. In addition, we study the effect of
the position of the DW on the I-V characteristics of the
MPC. In all cases presented here we consider collinear
spins. This is justified by a recent calculation from Ima-
mura et. al.20 who have used a Heisenberg model in a
mean field approximation to show that, in the case of a
domain wall pinned in a constriction, there is no spin pre-
cession and minority and majority bands can be treated
separately.

IV. RESULTS AND DISCUSSION

As mentioned previously we model a point contact fol-
lowing the sketch of figure 1, where we consider a simple
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cubic lattice of nickel atoms with the MPC composed by
a two-atom-wide four-atom-long chain connected to two
semi-infinite rods representing the current/voltage elec-
trodes.

We start by considering the situation where no mag-
netic field is applied to the MPC. In this case we assume
that a DW forms inside the constriction. However it is
worth noting that the position of the DW is not a priori

determined, since in general it is given by pinning centers
in the junction. These are not present in our calculations
and therefore we have considered two possibilities: 1) the
DW is situated half way across the device (symmetrical
case), and 2) the DW is situated between the third and
fourth transversal plane (asymmetrical case). It impor-
tant to stress that in both the situations the domain wall
is abrupt and that the direction of the magnetization
changes by 180o across the Bloch wall.

-1 -0.5 0 0.5 1

V [ Volts ]
-30 

-20 
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20 
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Antiparallel Asymmetric DW
Antiparallel Symmetric DW

Figure 3: Current as a function of bias applied for both par-
allel (solid line) and antiparallel alignment of the magneti-
zations in the leads. For the antiparallel configuration we
consider the domain wall positioned either between the sec-
ond and the third plane of the MPC (symmetric DW, dashed
line) and between the third and the fourth plane (asymmetric
DW, dotted line). Note the large magnetoresistance in both
the cases and the large asymmetry of the I-V characteristic
for the asymmetric domain wall.

Figure 3 shows our results for all these cases. As a
matter of notation, in all the I-V curves presented here-
after we define positive bias when the current flows from
the left hand-side to the right hand-side (from plane one
to four) and we use the left-hand side lead to set the spin
direction. In figure 3 the dashed curve shows our result
for a symmetric DW and the dotted line the asymmet-
ric. We can clearly see that an asymmetric I-V curve
appears when the domain wall is asymmetrically placed
with respect to the junction.

Before discussing the reason for this asymmetry we
consider the case when a magnetic field strong enough to
align the magnetic moment of the leads is applied. We
simulate this situation by setting the magnetization of
the leads to be parallel to each other. The self consis-
tent solution now does not present any Bloch wall and
the corresponding I-V characteristic is also shown in fig-
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Figure 4: Transmission coefficient as a function of energy for
different biases and spin. The different curves refer to: a)
parallel case majority spin, b) parallel case minority spin,
c) antiparallel symmetric case majority spin, d) antiparallel
symmetric case minority spin, e) antiparallel asymmetric case
majority spin, f) antiparallel asymmetric case minority spin.
We define positive bias when the current is flowing from the
left to the right, and the spin direction with respect to the
magnetization direction of the left hand-side lead. The dashed
line denotes the position of the Fermi level (EF = 0.68 eV).

ure 3 (solid line). From the picture it is clear that the
current for the parallel configuration is larger than that
of both the antiparallel ones at any bias. This of course
means that the point contact presents positive magne-
toresistance at any bias. It is also worth noting that
such a magnetoresistance increases as the bias increases,
in particular for the case in which the DW is asymmet-
rically placed in the junction. This suggests that a large
GMR entirely due to the electronic properties of the point
contact can be obtained, although for a fully quantitative
estimation a more realistic description of the electronic
structure and the structural conformation of the point
contact is needed.
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Let us now turn our attention to the asymmetry prop-
erties of the I-V curves. In order to achieve a qualitative
understanding of the underling physics it is useful to cal-
culate the transmission coefficients as a function of the
energy for different biases and for the three situations
studied (parallel, antiparallel symmetry and antiparallel
asymmetric). These are presented in figure 4.

Since the current is essentially given by the energy in-
tegral of the transmission coefficient over the bias win-
dow (see the equation (12)), from the picture one can
establish the relative contribution of the different spin
currents to the total current for a given bias. For the
parallel case (figure 4a and 4b) the current has contribu-
tions from both the spin directions, although the major-
ity spins contribute to the transmission coefficient below
the Fermi level and the minority contribute above. Bor-
rowing the notation from molecular transport theory27

we can say that the majority spin conductance is through
the highest occupied molecular orbital (HOMO), while
the minority is through the lowest unoccupied molecular
orbital (LUMO).

The situation changes drastically when we look at the
antiparallel alignment. Consider first the symmetric DW
case. From the figures 4c and 4d one can see that the con-
ductance around EF is dominated by majority spins for
positive bias and by minority spins for negative bias. We
can understand this behaviour by looking at the cartoon
of figure 5.

Here we schematically model our magnetic point con-
tact as a magnetic molecule. When the magnetization of
the two leads are aligned parallel to each other (and to the
molecule) the molecule presents a majority spin HOMO
and a minority spin LUMO state (figure 5a). Both these
states extend through the whole molecule and can give
rise to resonant transport.

a) b)

d)c)

Figure 5: Cartoon showing the levels alignment in the mag-
netic point contact. The solid (dashed) line denotes a ma-
jority (minority) spin molecular state. a) parallel case, b)
antiparallel symmetric case at zero bias, c) antiparallel sym-
metric case at positive bias, and d) antiparallel symmetric
case at negative bias. Note that for the antiparallel case the
spin of the resonant level is opposite for opposite bias direc-
tion.

In contrast, in the antiparallel case the DW formed in-
side the molecule splits the HOMO and LUMO states. In

fact, since the transmission through the DW is small and
the coupling with the leads strong, we can now model
our system as two molecules strongly attached respec-
tively to the left and the right lead, but weakly coupled
to each other. This gives rise to the level scheme pre-
sented in figure 5b, which is strictly valid only in the
case the DW resistance is infinite. Within this scheme
the left hand-side part of the PC couples strongly with
the left lead therefore presenting a majority spin HOMO
and a minority spin LUMO. The situation is opposite on
the right hand-side since the magnetization of the right
lead is rotated. Recalling the fact that we do not consider
the possibility of spin mixing, this configuration presents
a large resistance since there are no resonant states with
the same spin extending through the entire point con-
tact. If we now apply a bias there will be level shifting.
This aligns the majority spins HOMO on the left with
the LUMO on the right for positive bias (figure 5c) and
the minority LUMO on the left with the HOMO on the
right for negative bias (figure 5d). Therefore this mecha-
nism leads to majority spin conductance for positive bias
and minority spin conductance for negative.

From this simple scheme it is also easy to explain the
symmetry properties of the I-V curves. These are mainly
given by the charging properties of the whole structure.
For positive bias and symmetric DW charge is accumu-
lated in the first two atomics planes to the left of the
DW and it is depleted in the two atomic planes to the
right. This is demonstrated in figure 6 where we present
the net charge on each atomic plane as a function of bias
voltage. According to the equation (13) charge accu-
mulation (depletion) moves the molecular levels toward
higher (lower) energies. In the case of a symmetric DW
the molecular states to the left and to the right of the
Bloch wall charge in a symmetric way with respect to
the bias direction. This means that the level alignment
responsible for the large current will occur for the same
bias difference independently from the bias polarity.

In contrast, when the DW is between the third and the
fourth plane, more charge can be accumulated (depleted)
to the left of the DW with respect to the right (see figure
7), since more states (atomic planes) are available. In
other words the energy levels do not shift at the same
rate for positive and negative bias. This means that the
alignment of the energy level now depends on the bias
polarity, leading to an asymmetric I-V curve. Note that
the mechanism for asymmetry proposed here does not
require different coupling between the point contact and
the two leads, but only a non-symmetric position of the
DW within the point contact.

In summary, we have calculated the I-V curve for a
model magnetic point contact, and demonstrated that
large magnetoresistance can be obtained solely from its
electronic properties. This is the result of strong scat-
tering through a domain wall pinned inside the contact.
We have also investigated the rôle of the position of the
DW inside the junction and its effect on the I-V curves.
Our main result is that largely asymmetric I-V curves
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Figure 6: Net charge accumulated in the point contact as a
function of bias and the atomic position: antiparallel sym-
metric case. The net charge is calculated as the occupation
difference per plane between the self-consistent charge and
that obtained at zero bias. Positive (negative) sign indicates
that electrons have been removed from (donated to) the plane.
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Figure 7: Net charge accumulated in the point contact as a
function of bias and the atomic position: antiparallel asym-
metric case. The domain wall is positioned between the third
and fourth plane. The net charge is calculated as the occu-
pation difference per plane between the self-consistent charge
and that obtained at zero bias. Positive (negative) sign indi-
cates that electrons have been removed from (donated to) the
plane.

can be found when the DW is asymmetrically placed in-
side the point contact, although the whole structure does
not present any structural asymmetry. We have inter-
preted this result in terms of the charging properties of
the junction and of spin-dependent HOMO/LUMO align-
ment. Although our results are semi-quantitative and a
more accurate description of the electronic structure of
the materials forming the point contact is needed, we be-
lieve that large asymmetry of the I-V curve and GMR
are a common feature of atomic scale magnetic point con-
tacts.
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